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Summary

1. One aspect of biodiversity, functional diversity, reflects the functional role of species within a community as

measured by species characteristics.We present a newmetric, functional trait dispersion, based on the concept of

species distinctiveness measured as the distance among species in the multidimensional space defined by trait

values. This metric can be decomposed into components of species richness, functional evenness and mean

dispersion, and into parts thatmeasure diversity within and among subgroups.

2. Using an appropriate distance measure, mean dispersion (M0) is calculated as the average distance among all

possible pairs of species. Functional evenness [qE(T)] is derived fromHill diversity based on the proportional dis-

tances between pairs of species and species richness (S). Functional trait dispersion [qD(TM)] is then computed as

1 + (S�1) 9 qE(T) 9 M0. It has a range of [1,S] and measures the effective number of functionally distinct

species for a given level of species dispersion.

3. Using constructed data, we demonstrate that qD(TM) captures appropriate ecological properties such that a

community with greater species richness, greater dispersal in trait space or greater mean dispersion has greater

functional diversity. Functional trait dispersion can also provide measures of within-community dispersion and

the effective number of functionally distinctive compartments (groups of communities with similar functional

structure). Using empirical data of bats along an elevational gradient in Peru, we demonstrate that functional

trait dispersion and its components provide insights about gradients of biodiversity.

4. Functional trait dispersion comports to reasonable criteria for a metric of functional diversity and can be

decomposed in a variety of ways that facilitate understanding of patterns of variation.Othermetrics of functional

diversity neither integrate all three diversity components, nor canmany be decomposed into variation within and

among subgroups. Because functional trait dispersion measures properties of distance and the effective number

of functionally distinct species, it can be used in conjunctionwith other biodiversitymetrics that are based on spe-

cies identity, abundance or phylogenetic relatedness to informmanagement and the preservation of biodiversity.

Key-words: alpha diversity, bats, beta diversity, dispersion, diversity metric, evenness, functional

trait, gamma diversity,Hill diversity, Peru, species richness

Introduction

The diversity of a biological community can be measured in a

variety of ways, each of which captures information about a

different aspect of species within that community. Here we

consider the functional diversity of species, which are a natural

focal unit for communities, although other foci can be consid-

ered such as genes or traits. Differences among members of a

community may be reflected in their taxonomic identities,

abundances, phylogenetic relationships or functional charac-

teristics. Until recently most measures of diversity focused on

species identities or abundances (Magurran & McGill 2011).

In the past two decades attention has expanded to include

aspects of phylogeny (e.g. Faith 1992; Chao, Chiu& Jost 2010)

or function (Table S1, Supporting Information). Interest in

functional diversity has increased markedly in the past few

years, with considerable focus on how it should be measured

and in the number of studies using those metrics (Reynolds

et al. 2015). In this paper, we examine the concept of func-

tional diversity, propose a metric that integrates its multiple

aspects, and compare that metric to ones that are used most

commonly.

Functional diversity is a complex concept, much more so

than identity, abundance or phylogenetic diversity. Identity

diversity is species richness. Abundance diversity characterizes

each species by its proportional abundance, recognizing that

other units such as biomass or frequency of occurrence could

be substituted for abundance. Althoughmanymetrics of abun-

dance diversity have been proposed (see Table 9.2 in, Gure-

vitch, Scheiner & Fox 2006), many are special cases of the Hill

index (Hill 1973):
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for non-negative q 6¼ 1 and q = 1, respectively, where S is the

number of species, pi is the proportional abundance of the ith

species, q is the order of the diversity metric that determines

the weighting of proportional abundances and A indicates

that diversity is measured based on abundances. The index

has a range of [1,S] and measures species equivalents. It mea-

sures the effective number of species that a community would

contain if it had the same diversity and all species had the

average abundance. Values of 0, 1 and 2 for q are common

and associated with popular metrics. When q = 0, 0D(A)

equals species richness; when q = 1, 1D(A) is the exponential

of Shannon diversity; and when q = 2, 2D(A) is the Gini–
Simpson index (Hill 1973; Chiu, Jost & Chao 2014). As the

value of q increases, the relative contributions of more abun-

dant species increase. Measured in this way, diversity

comprises two components, richness and evenness: qD

(A) = S 9 qE(A) (Tuomisto 2012). An analogous measure of

phylogenetic diversity based on the relative branch lengths of

each species reflects the number of equally divergent species

(Scheiner 2012). This metric also comprises components of

richness and evenness. Because abundance and phylogenetic

diversity are measured in species equivalents, comparisons are

facilitated among communities and between measures of

diversity based on different types of species characteristics

(e.g. abundance, evolutionary history).

Abundance and phylogenetic diversity are each based on a

single characteristic of each species. In contrast, functional

diversity is typically based on multiple traits of each species.

Previously, we (Presley, Scheiner &Willig 2014) defined a met-

ric of functional diversity based on the Hill index. That metric

captured two components, richness and functional evenness,

expressed as the number of equivalently distinct species from a

functional perspective, making it analogous to Hill diversity as

measured for abundance or phylogeny. However, that mea-

sure of functional diversity only reflects the evenness of the dis-

tribution of species in trait space. Functional diversity has

another characteristic, the magnitude of dispersion of species

in trait space. Here, we produce an integrated measure that

combines richness, evenness and dispersion into a single

metric, functional-trait dispersion.

Functional diversity

CONCEPTS

Functional-trait dispersion is based on the concept of distinc-

tiveness as measured by the distance among species in multidi-

mensional trait space. For categorical traits, functional

diversity can be defined based on one of these two concepts:

1 Functional diversity is greatest when each species in an

assemblage has a unique set of trait attributes.

2 Functional diversity is greatest when an assemblage contains

species that have every possible combination of trait attributes.

For simplicity, we label these the ‘uniqueness’ and ‘combina-

torics’ concepts respectively. Our metric is based on the

uniqueness concept; many other metrics are based on the com-

binatorics concept (see below). The uniqueness concept for

continuous traits posits that maximum diversity corresponds

to each species occurring at the boundary of trait space and

being equally as far apart from each other as possible. For the

combinatorics concept, maximal diversity occurs when the dis-

persion of species is as compact as possible while equalizing the

minimumdistances between species (Fig. 1).

Ametric of functional diversity should be able to distinguish

between communities of species that differ in several properties

that emerge from the uniqueness concept. For two communi-

ties, functional diversity should be larger for the community

that has a greater dispersion of species in the trait space, amore

equitable distribution of species in trait space (evenness) or

greater species richness. Consequently, an integrated metric

should combine the properties of dispersion, evenness and

richness, and be decomposable into those separate compo-

nents. Moreover, the metric should facilitate the separation of

functional diversity with respect to a hierarchy, that is a larger

unit such as a landscape (c-diversity) into the mean functional

diversity of constituent subunits such as local communities

(a-diversity) and to variation among those subunits or local

communities (b-diversity). Finally, a metric of functional

diversity should not be confounded by considerations of other

properties of species, such as abundance or phylogenetic dis-

tance, but should facilitate integration with other properties

into amore comprehensivemetric.

When functional diversity is based on the dispersion of spe-

cies in trait space, it is ameasure of the way that species charac-

teristics affect the role of a species within a community

(‘function of’). This aspect of functional diversity is closely

related to concepts of the niche (Chase & Leibold 2003). In

contrast, a metric can reflect ‘function for’, the way that each

species affects ecosystem properties (e.g. the amount of carbon

fixed per unit area per unit time). It is possible tomeasure func-

tion-for diversity as species equivalents (Scheiner 2012), and

discussions of functional diversity are typically couched in
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Fig. 1. Graphic representation of the position of five species in func-

tional space defined by two traits. (a) An illustration of the uniqueness

concept where each species has the same set of distance with all of the

other species and are as distant from each other as possible. (b)An illus-

tration of the combinatorics concept where each species has the same

minimum distance, in this case the distance to the central species, in as

compact an arrangement as possible.
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attempts to understand the ways that diversity affects

ecosystem processes (Tilman et al. 1997; Hooper et al. 2005;

Nunes-Neto, Moreno & El-Hani 2014; Mokany et al. 2016).

However, function-for is difficult to measure, so research

efforts generally focus on function-of, an exception being

Cadotte et al. (2009). Generally, function-of is assumed to be a

proxy of function-for. We focus on diversity that reflects func-

tion-of and leave the chore of linking diversity with

function-for to a later endeavour.

COMPONENTS

Measures of abundance and phylogenetic diversity based on

Hill numbers have two components – richness and evenness –
embodied in a multiplicative relationship, diversity = rich-

ness 9 evenness (Jost 2006; Scheiner 2012). For functional

diversity based on trait values of species, the central properties

to capture are the configuration and dispersion of species in

trait space. Consequently, considerations of trait space require

concepts of richness and evenness that are different from those

usedwith regard to abundance or phylogeny.

Mason et al. (2005) recognize three components of func-

tional diversity: functional richness, functional evenness and

functional divergence (we prefer to restrict the term ‘diver-

gence’ to characterize phylogenies, and recommend ‘distinc-

tiveness’ to characterize function). In their lexicon, functional

richness is the amount of trait space occupied by species; func-

tional evenness is the equability of abundances in trait space;

and functional distinctiveness is the dispersion of species in

trait space weighted by their abundances. Of the many metrics

that have been proposed, six are most commonly used (Rey-

nolds et al. 2015): richness as FDor FRic, evenness as FEve and

distinctiveness as Rao’s Q, FDis or FDiv (Table S1). We con-

sider two additional metrics. Functional attribute diversity

(FAD) is ameasure of functional distinctiveness, and is the origi-

nal functional diversity metric. Total functional diversity, qFD

(Q), has been proposed recently and is the only metric that com-

bines richness, evenness and abundance-weighted dispersion.

The weighting of trait values by abundance is based on the

assumption that function-for has a linear relationshipwith spe-

cies abundances. However, such weighting confounds func-

tion-of with function-for. Importantly, there is no justification

for assuming that function-for effects will scale linearly with

abundance or that such scaling will be the same for all species.

Even within a group of closely related and morphologically

similar species such as New World bats, body mass can range

from 5 to 190 g. Food consumption or seed dispersal by ten

individuals of a large canopy frugivore (e.g. Aribeus lituratus,

60�3 g) is unlikely equal to food consumption or seed dispersal

by ten individuals of a small canopy frugivore (e.g.Mesophylla

macconnelli, 6�9 g). Consequently, one could argue that trait

values should be weighted by the cumulative mass of a species

rather than by its abundance, and even this assumes that meta-

bolic constraints are equivalent for all species. Such weighting

of trait values is arbitrary unless accompanied by a cogent con-

ceptual justification or empirical measures that corroborate

ecosystem consequences.

We take a different approach to richness, evenness and dis-

tinctiveness as it relates to functional diversity. Rather than

considering functional richness as a property of how trait space

is filled as per Mason et al. (2005), in our metric functional

richness is linked to species richness so that the integrated met-

ric measures quantities of distance and the effective number of

functionally distinct species and scales with species richness.

We define evenness, qE(T), as the extent to which species are

equally dispersed in trait space. Functional-trait species diver-

sity, qD(T), is based on variation in dispersion and uses the Hill

number framework, so it combines richness with evenness

(Presley, Scheiner & Willig 2014). We define dispersion as the

mean distance between all pairs of species in trait space. Our

measure of functional diversity – functional-trait dispersion –
integrates these properties in amultiplicative way so that diver-

sity increases with the product of richness, evenness and disper-

sion. This relationship, thus, has a direct parallel to

multiplicative measures of abundance and phylogenetic diver-

sity. Importantly, our metric of functional diversity measures

meaningful properties of communities independently of

species’ abundances.

Our concepts most strongly diverge from those of Mason

et al. (2005) with regard to evenness. Ignoring considerations

of abundance, for them species are most evenly dispersed in

trait space when each species has the same distance to its near-

est neighbour (Fig. 1a). For us, species are most evenly dis-

persed when each has the same distance to all other species.

For continuous traits, maximal evenness can occur only when

the number of species is less than or equal to the number of

traits plus 1. Otherwise, it occurs when species are arrayed in

trait space so that each species has the same relationship with

all other species and consequently the same set of distances

(Fig. 1b). Their approach is based on a combinatorics concept,

whereas our approach is based on a uniqueness concept.

CONSTRUCTING THE DIVERSITY METRIC

Let dij represent the standardized distance in trait space

between the ith and jth species, so that 0 ≤ dij ≤ 1, dij = dji and

dii = 0. The mean of those distances for all species is:

M ¼ PS
i

PS
j dij=S

2, where S is number of species.M provides

a measure of the magnitude of dispersion; it has a range of [0,

(S�1)/S] andmeasures standardized distance.

We next define the proportional distance between the ith

and jth species as fij ¼ dij=
PS

j dij. Using that, we obtain a

measure of variability among pairwise distances with the Hill

function (Hill 1973):

qHðTÞ ¼
XS

i

XS

j
f
q
ij

� � 1
ð1�qÞ

; eqn 3

(by definition qH(T) = 0, if all dij = 0). From this quantity we

calculate functional-trait species diversity:

qDðTÞ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 qHðTÞp
2

: eqn 4

The derivation of this metric is given in the Appendix S1.

This metric indicates the effective number of equally distant
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species and has a range of [1,S]. qD(T) is maximized at S when

all species are equidistant in trait space; qD(T) can equal S

only if the number of species do not exceed the number of

traits plus 1. Otherwise, the effective number of species is less

than S, and equals the number of species whose pairwise dis-

tances would sum to the total pairwise distance if all inter-

specific distances exactly equal the weighted generalized

mean of pairwise distances with exponent q�1 (see the

Appendix S1 for a derivation of this definition, eqs. A8 and

A13). As the evenness of the distribution decreases, qD(T)

decreases. The greater the value of q, the more weight is

given to pairs of species with large distances. This effective

number is directly analogous to that for abundance data

(eq. 1). Similar to abundance diversity, a limit formulation

(eq. 2) is used when q = 1. qD(T) can be decomposed into

components of richness and evenness: qE(T) = qD(T)/S

(Tuomisto 2012). The Hill function used in this study differs

from that of our previous papers that was based on either

minimum distances among species (Scheiner 2012) or mean

interspecific distances (Presley, Scheiner & Willig 2014). In

using all pairwise distances to compute Hill diversity, our

new formulation reflects comprehensive information about

variability that was not captured in our earlier metrics.

Finally, we combine functional-trait species diversity and

mean dispersion into an integrated metric, functional-trait

dispersion:

qDðTMÞ ¼ 1þ qDðTÞ �M; eqn 5

or equivalently as:

qD TMð Þ ¼ 1þ S� 1ð Þ�qE Tð Þ �M0; eqn 6

where M0 ¼ S
S�1M, range [0,1]. Equation 6 emphasizes that

the metric combines species richness, functional-trait evenness

and mean dispersion (see the Appendix S1 for a proof of the

equality of the two formulations). We call this metric ‘func-

tional-trait dispersion’ because it is determined by the disper-

sion of species in trait space and measures the effective number

of functionally distinct species; it has a range of [1,S].We repre-

sent the new metric as qD(TM) to emphasize that it combines

Hill diversity based on functional traits (T) and mean distance

(M). When all species are equally distant from each other,
qE(T) = 1, but alsoM0 = 1 because distances are standardized,

so that qD(TM) = S. As the evenness of the dispersion

decreases, both qE(T) and M0 will decrease, with the exact

changes in that dispersion determining how each component is

affected. Thus, the ‘effective number’ of species can be thought

of as the proportional decrease from actual species richness due

to deviations from a perfectly equitable dispersion of species.

This metric also allows functional information to be combined

with abundance information through equivalent versions of

M, qD(T), qE(T) and qD(TM) (Table S1, see Appendix S1 for

derivations). When abundance is included, the effective num-

ber also includes a component due to deviations from a per-

fectly even number of individuals in each species. An R-script

for computing all of these metrics was written by Shan

Kothari, University of Minnesota, and is available on Github

at: https://github.com/ShanKothari/DecomposingFD.

WHOLE-PART RELATIONSHIPS

A limitation of most other metrics of functional diversity is

that approaches for decomposing themwithin and among sub-

groups remain unclear. By convention, we refer to the diversity

of the entire set (e.g. landscape) as c-diversity, the mean diver-

sity within subgroups (e.g. communities) as a-diversity and the

variation among subgroups as b-diversity. Here, we use a spa-

tial structure, referring to the entire set as the landscape and

the subgroups as communities. Most often such whole-part

relationships refer to spatial subgroups, but need not. For

example we might be interested in the relationship of a set of

species into predefined groups or a clade into subclades. We

also make a distinction between unstructured c-diversity – the

diversity of the entire set considered as a single unit without ref-

erence to part affiliation – as compared to structured c-diversity
– the diversity of the entire set when part affiliation is integral

to the concept and its measurement (see alsoKosman 2014).

For our dispersion metric (M), the whole-part is an additive

relationship: Mc = Ma + Mb (see eqs. A26, A30 and A32 in

AppendixS1).ForHilldiversity, acommonrelationship ismul-

tiplicative. For abundance data, qD(A)c = qD(A)a 9 qD(A)b,

although disagreements exist as to how qDa should be com-

puted (Jost 2007; Tuomisto 2010). For such a relationship, b-
diversity is the effective number of communities that would

each contain a unique set of equally abundant species and is

usually computed from the ratio: qD(A)c/
qD(A)a. For our

treatment of functional data, however, this multiplicative par-

tition should not be used because it does not properly account

for within- and among-community variation. Instead, qD(T)b is

calculated by first computing the distances between each pair of

communities (eq. A29) and then applying eqs. 3 and 4 (eqs. A34

andA4), resulting in ameasure of the effective number of equally

distant communities. Defined in this way, there is no simple

mathematical relationship between c-, a- andb-diversities.
Because qD(T)b reaches its maximum value when communi-

ties are equally distant, it does not distinguish between commu-

nities that are close from those that are distant. To provide

such discrimination, functional-trait species diversity must be

combined with mean dispersion. It is not possible to compute
qD(TM)b directly from qD(TM)c and qD(TM)a because its

components [Mc and qD(T)c] have different partitionings –
additive and multiplicative respectively – so that performing

either partition alone is open to question. Instead, qD(TM)b is

computed by calculating Mb and qD(T)b, and applying eq. 2

(eq. A40). qD(TM)b provides a measure of the effective number

of functionally distinct communities. As with unstructured c-
diversity, for structured c-diversity, a-diversity and

b-diversity, abundance information can be incorporated using

appropriatelymodified versions of eqs. A22–A25.

Constructed data

UNSTRUCTURED c -D IVERSITY

We illustrate the behaviour of qD(TM) and compare it to that

of other metrics through the use of constructed and empirical

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 809–820
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data sets. The constructed data sets are simple and designed to

manipulate the distribution of trait values among and within

communities so as to demonstrate the behaviour of the metric

with respect to distinctive types of variation in functional traits

(Fig. 2). The empirical data demonstrate how the metrics

behave when confronted with the complexities of ecological

reality.

For the constructed data sets, we considered the traits to

be measured on a ratio scale and measured distance as mean

character difference, also known as weighted Manhattan dis-

tance. Based on the criteria for a metric of functional diver-

sity that we listed in the Introduction, functional-trait

dispersion, qD(TM), behaves as desired (Table 1). Compared

to Landscape 1, Landscapes 2 and 4 each have greater func-

tional diversity. Landscape 2 has greater functional diversity

because it contains more species within the same total vol-

ume, whereas Landscape 4 has greater functional diversity

because it comprises species that are more dispersed in trait

space (albeit with the same species richness). Conversely,

Landscapes 3, 5 and 6 are less diverse than Landscape 1

because their species are either closer together within the

same total dispersion (i.e. Landscape 3), or less dispersed

overall and contain fewer species (i.e. Landscapes 5 and 6).

In general, qD(TM) captures these notions of diversity,

whereas qD(T) and M, indicate which components of the

integrated metric are responsible for those differences

(Tables 1 and S2). For example Landscape 2 has a lower

mean distance among species than does Landscape 1,

whereas the functional-trait species diversity [1D(T)] of Land-

scape 3 is only slightly greater than that of Landscape 1,

reflecting a similar functional-trait evenness.

We compared our metric with other commonly used diver-

sity metrics calculated using R (R Core Team 2015). FD was

calculated using the ‘treedive’ function from the vegan library

(Oksanen et al. 2015). FAD was calculated as the sum of all

pairwise distances (mean character differences) using the ‘dist’

function. FRic, FEve, FDis and FDiv were calculated using

the FD package (Lalibert�e, Legendre & Shipley 2014). For met-

rics that involved abundances, we assumed that all species were

equally abundant, thereby isolating effects of changes in func-

tional diversity rather than confounding changes in abundance

and function. Because qFD(Q) = FAD and Q = M when all

species have equal abundances, we did not include those met-

rics in our analyses.

None of the other metrics behave in a manner that corre-

sponds to our criteria for an effective metric of functional

diversity based on the uniqueness concept. For metrics involv-

ing branch lengths – FD and FEve – Landscape 4 has the low-
est values. The largest value for FD occurs for Landscape 3,

reflecting that metric’s emphasis on evenness of minimum dis-

tances. The largest value for FEve occurs for Landscape 6,

because the metric imposes a penalty against high species rich-

ness. For one of the metrics involving convex hulls, FRic iden-

tifies Landscape 5 as the most diverse and it fails to distinguish

between Landscapes 1 and 2. For FDiv, the smallest value

occurs for Landscape 2, again reflecting that metric’s emphasis

on evenness of minimum distances. Of the metrics based on

distances, FDis and FDiv recognize Landscape 4 as the most

diverse, but identify Landscape 2 as the least diverse. In con-

trast, FAD indicates that Landscape 2 is substantially more

diverse than the others because the metric fails to account for

species richness.
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Fig. 2. Graphic representation of species in functional space defined by two traits for multiple communities within a landscape. Each landscape

(numbered 1–6) contains three or four communities that each comprise four species.Within a landscape, species designated by the same shape belong

to the same community. Superimposed shapes indicate that the same species is a member of more than one community. The axis ranges are the same

for all landscapes, except landscape 4.
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Our metrics of functional diversity capture the same infor-

mation as do current metrics, but in a way that allows them to

be integrated into a single metric. Species richness, mean dis-

persion (M) andFADhave a simplemathematical relationship

(Table S1). For these constructed examples, qD(TM) has a

rank-order correlation of 1 with FAD, with the correlation pri-

marily being driven by the effects of species richness (r = 0�94,
Table S2). In addition, qD(T) has relatively large, negative cor-

relations with FRic, FDis and FDiv, whereas qD(TM) has

large, negative correlations with FD, FRic and FEve. Because

our constructed examples were designed to mostly explore the

effect of changes in M, these comparisons do not provide a

definitive assessment of how our metric compares with others.

Such a comparison requires a large scale simulation like that of

Mouchet et al. (2010). However, our comparisons suggest that

many of the properties captured by those other metrics are

included within ours, and that our integrated metric – qD(TM)

– suitably represents overall functional diversity.

a - AND b -D IVERSITY

Our integrated metric captures features based on considera-

tions of whole-part relationships (Table 2). For a-diversity in

Landscapes 1, 2 and 4, the distances among the species within

each community are the same. Yet, the value of qD(TM)a for

Landscape 4 is less than that of the other landscapes because

the relative distances among the species within each commu-

nity are smaller than in other landscapes due to the

standardizing of distances to the span of trait values across the

entire landscape. As a result, the value ofMa for Landscape 4

is substantially lower than the others. In contrast, the value of
qD(T)a for all landscapes is about the same.

For similar reasons, qD(TM)b captures differences in dis-

tances among the communities (e.g. Landscape 1 vs. Land-

scape 4). In contrast, qD(T)b provides a better measure of the

number of distinct communities with respect to species identi-

ties. We did not attempt a whole-part decomposition for the

other diversity metrics because all would give patterns already

reflected inM, qD(T) or qD(TM). Moreover, it is not clear that

such a partition is possible for measures that involve branch

lengths or convex hulls (see Discussion). As we stated previ-

ously, qD(TM)b needs to be measured directly from the data

rather than as qD(TM)c/
qD(TM)a. To see why, consider Land-

scapes 1 through 4. In all cases, the computed ratio results in a

number of effective communities that is larger than the actual

number of communities (e.g. 4�8 for Landscape 4). As the effec-

tive number should always be no greater than the actual

number, clearly such an operation leads to incorrect values.

For functional traits, because unstructured c-diversity and

structured c-diversity measure different landscape properties,

their values need not be identical (Tables 1 and 2). Species that

occur in more than one community must be treated differently

when the entire landscape is considered as a single unit as com-

pared to when the landscape is considered to be an aggregation

of subunits. In the case of unstructured c-diversity, each species
is considered only once in the calculation. In the case of

Table 1. Species richness and values of functional diversitymetrics (Table S1) for constructed and empirical data sets

Data set S FD FAD FRic FEve FDis FDiv 1D(T) M 1E(T) M0 1D(TM)

Constructed data

Landscape 1 12 5�33 50�89 0�48 0�65 0�45 0�88 11�12 0�35 0�93 0�38 4�89
Landscape 2 16 6�61 78�67 0�48 0�82 0�37 0�73 14�91 0�31 0�93 0�33 5�62
Landscape 3 12 7�00 46�67 0�57 0�90 0�39 0�75 11�42 0�32 0�95 0�35 4�65
Landscape 4 12 4�59 58�70 0�50 0�34 0�55 0�95 10�67 0�41 0�89 0�45 5�38
Landscape 5 9 6�80 29�37 0�66 0�80 0�46 0�82 8�54 0�36 0�95 0�41 4�07
Landscape 6 8 6�80 21�60 0�56 1�00 0�42 0�78 7�66 0�34 0�96 0�39 3�60

Empirical data

500 m a.s.l. 76 187�83 15 626�86 1�43 0�64 1�52 0�85 72�21 0�35 0�95 0�36 26�62
750 m a.s.l. 64 160�61 10 835�73 0�83 0�64 1�49 0�83 60�45 0�35 0�94 0�35 21�88
1000 ma.s.l. 52 141�22 6919�88 2�51 0�63 1�46 0�83 49�00 0�33 0�94 0�34 17�35
1250 ma.s.l. 45 111�89 4878�07 1�83 0�60 1�41 0�81 42�09 0�32 0�94 0�32 14�26
1500 ma.s.l. 26 75�44 1587�43 2�58 0�61 1�40 0�82 24�14 0�30 0�93 0�31 8�23
1750 ma.s.l. 19 53�86 756�06 1�10 0�57 1�29 0�76 17�38 0�27 0�91 0�29 5�69
2000 ma.s.l. 15 52�52 563�00 3�34 0�69 1�46 0�83 14�03 0�32 0�94 0�35 5�54
2250 ma.s.l. 11 44�82 304�87 2�60 0�77 1�47 0�87 10�32 0�33 0�94 0�36 4�40
2500 ma.s.l. 14 51�47 510�78 3�41 0�79 1�52 0�88 13�14 0�35 0�94 0�38 5�60
2750 ma.s.l. 11 45�51 310�40 3�34 0�82 1�52 0�85 10�43 0�34 0�95 0�38 4�58
3000 ma.s.l. 8 36�42 169�42 2�79 0�78 1�56 0�93 7�61 0�34 0�95 0�39 3�59
3250 ma.s.l. 7 33�97 126�28 2�94 0�78 1�52 0�81 6�67 0�33 0�95 0�39 3�22
3500 ma.s.l. 6 32�94 87�75 3�01 0�79 1�45 0�83 5�74 0�30 0�96 0�36 2�74
AllManu 92 212�31 23 330�06 1�68 0�60 1�54 0�85 87�11 0�36 0�95 0�37 32�49

When all species have equal abundances, qFD(Q) = FADandQ = M. Numbers listed for empirical data refer to elevational strata.

S, species richness; FD, functional diversity; FAD, functional attribute diversity; FRic, functional richness; FEve, functional evenness;

FDis, functional distance; FDiv, functional divergence; 1D(T), functional-trait species diversity; M, mean dispersion; 1E(T), functional-trait

evenness;M0, standardizedmean dispersion; 1D(TM), functional-trait dispersion.
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structured c-diversity, each species in each subunit is consid-

ered as a separate entity. To see why, imagine two landscapes.

The first contains species A that is found in two constituent

communities along with other species (Landscape AA). The

second contains species A and B, each in separate communi-

ties, with each species having identical functional attributes

(Landscape AB). Because species A and B are identical from a

functional perspective, the functional diversities of Landscapes

AA and AB should be equal. That equality is achieved in

Landscape AA only if species A in each of its constituent com-

munities is treated as a distinct entity for the calculation of

functional diversity of the entire landscape. This requirement

for calculating c-diversity differently in unstructured and struc-
tured contexts holds for all othermetrics of functional diversity

(Table S1).

Empirical data

METHODS

To explore the behaviour of our metrics of functional diversity

based on empirical data, we focused on the bat fauna of the

Manu Biosphere Reserve (hereafter Manu, Patterson, Stotz &

Solari 2006). This reserve is located on the eastern slopes of the

Andes in southeastern Peru (MacQuarrie 1992). It spans an

extensive elevational range (340 to 3625 m a.s.l.) and supports

structurally and compositionally distinct vegetation types that

occur sequentially along the elevational gradient (Terborgh

1971; Patterson et al. 1998). Vegetation varies from lowland

rain forest (<500 m a.s.l.) with 50 to 60 m canopies, to patches

of elfin forest (>3200 m a.s.l.) characterized by a low canopy

(3–5 m) and dense vegetation intermixedwith tall grasslands.

The elevational distributions of the bat species are based

on comprehensive surveys conducted over many years

(Table S2, Patterson, Stotz & Solari 2006). Data on species

incidence were organized into thirteen 250 m elevational

strata, with each stratum denoted as a community for our

analyses. The strata were chosen to balance the resolution of

empirical records and the amount of collection effort in each

interval (Presley et al. 2012).

Functional diversity was characterized using 16 categori-

cal and 10 continuous traits that were separated into six

groups: diet, foraging location, foraging strategy, body size,

masticatory mode and flight ability (Table S3, Cisneros

et al. 2014). Categorical traits were binary (i.e. a species

did or did not exhibit a trait) and characterized species

diet (fruit, nectar, invertebrates, vertebrates, fish, blood),

foraging location (open areas, over water, above canopy,

canopy, subcanopy, understory) or foraging strategy (aer-

ial, gleaning, hovering, other). Continuous traits character-

ized body size (mass, forearm length), masticatory mode

(greatest length of skull, condylobasal length, maxillary

tooth row length, breadth across upper molars, post-orbital

constriction, breadth of braincase) and flight ability (wing

aspect ratio, wing loading), which reflect physiological con-

straints, diet and foraging behaviour respectively. To

ensure that skull measurements associated with masticatory

mode represented more than variation in body size, princi-

ple component analysis was performed with varimax rota-

tion. The first two principal components, which together

accounted for 90% of the variation in skull attributes and

represented variation in skull size and skull shape, respec-

tively, were used in subsequent analyses. To determine the

functional distance between each bat species, Jaccard dis-

similarity was calculated for each group of binary traits

and the mean character difference was calculated for each

group of continuous traits. Then the combined distance

(dij) between species was determined by an equal-weight

averaging of the six group-specific distances; we confirmed

that the corresponding distances between communities

(dmAB, eq. A29) were non-negative and contained within

the interval [0,1].

a - , b - AND c -D IVERSITY

We first consider the unstructured c-diversity of bats along the
entire elevational gradient (Table 1, All Manu). A total of 92

species of bats occurred along the elevational gradient, with

species richness decreasing from 76 species at 500 m to six spe-

cies at 3500 m (Cisneros et al. 2014). The distribution of spe-

cies ranges along that gradient was primarily nested

(Table S3), exhibiting clumped species-loss with increasing ele-

vation (Presley et al. 2012). Rare species – those present in only
one or two sites – were found almost exclusively at low eleva-

tions, although a few species were found only at mid- or high

elevations. The standardized mean dispersion (M0 = 0�37) of
the entire landscape indicates substantial clumping in trait

space, mostly within guilds (Fig. 3), whereas the evenness of

dispersion [1E(T) = 0�95] indicates that the effective number of

functionally distinct species, 1D(T), is close to the maximum

(S). The estimate of functional-trait dispersion for the

Table 2. Spatial decompositions of functional diversity of the constructed and empirical data sets into landscape (structured c), within-community

(a) and among-community (b) components

Data set Sc Sa Sb
1D(T)c

1D(T)a
1D(T)b Mc Ma Mb

1D(TM)c
1D(TM)a

1D(TM)b

Landscape 1 12 4�00 3�00 11�12 3�88 2�99 0�35 0�07 0�28 4�89 1�27 1�84
Landscape 2 16 4�00 4�00 14�91 3�88 3�89 0�31 0�07 0�24 5�62 1�27 1�93
Landscape 3 12 4�00 3�00 11�42 3�88 3�00 0�32 0�14 0�19 4�65 1�54 1�57
Landscape 4 12 4�00 3�00 10�67 3�89 2�98 0�41 0�03 0�38 5�38 1�12 2�13
Landscape 5 9 4�00 2�25 11�15 3�89 2�91 0�34 0�29 0�06 4�79 2�13 1�17
Landscape 6 8 4�00 2�00 11�05 3�90 2�93 0�29 0�20 0�09 4�21 1�78 1�26
Manu 92 27�23 3�38 330�66 18�07 11�82 0�34 0�33 0�01 113�81 6�67 1�11
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landscape [1D(TM) = 32�49] indicates that although the spe-

cies are distinct from a functional perspective, they still cluster

into groups that reflect our notion of the number of functional

types at Manu. Neotropical bats have been categorized into

ten functional groups or guilds (Kalko 1997) based on: (1) the

density of vegetation through which they fly, which is related

to foraging location and flight ability in our classification, (2)

foraging mode, which is comparable to foraging strategy in

our classification and (3) diet, which is comparable to diet and

masticatory mode in our classification. Of those, eight guilds

are present at Manu: aerial insectivores, high-flying insecti-

vores, gleaning omnivores, canopy frugivores, understory fru-

givores, nectarivores, sanguinivores and piscivores. In addition

to criteria used byKalko (1997), we include body size to distin-

guish additional aspects of species niches. Indeed, body size

differs among species within functional groups as well as

between functional groups. Consequently, an estimate of an

effective number of functionally distinct species of approxi-

mately 32 types of bats at Manu is plausible given the number

of functional groups and the size variationwithin the fauna.

Across the elevational gradient, the correlation of species

richness with 1E(T) was weakly negative (r = �0�49) and with

Mʹ more strongly negative (r = �0�62; Table S5). Mʹ and 1E

(T) were positively correlated with each other (r = 0�77), indi-
cating that mean dispersion and the evenness of dispersion

were closely linked despite considerable variation in the com-

position and richness of elevationally defined communities

(Fig. S1,). Importantly, this was not true for the artificially con-

structed data sets (r = �0�12), illustrating that the metrics are

not confounded mathematically. In contrast, 1D(T) and 1D

(TM) were each highly correlated with species richness

(r = 0�99 and 1�00 respectively).
With respect to elevation, mean dispersion (Mʹ) increased

significantly (r = 0�64), evenness [1E(T)] increased but not sig-

nificantly (r = 0�51) and species richness, 1D(T) and 1D(TM)

decreased significantly (r = �0�99, r = �0�98 and r = �0�96,
respectively, Fig. 4). Variation in species richness played the

dominant role in moulding the gradient of functional-trait dis-

persion [1D(T)]. The elevational decrease in species richness

and the associated nested structure of species distributions are

attributable to both the loss of rare functional groups with

increasing elevation and a decrease in diversity within those

groups (Table S3, Fig. S1). Only four of the eight functional

groups (i.e. aerial insectivores, canopy frugivores, understory

frugivores and nectarivores) span the entire elevational gradi-

ent. Despite relatively small variation in the evenness of disper-

sion [1E(T) ranged from 0�91 to 0�95] and mean dispersion (Mʹ
ranged from 0�31 to 0�39), each of thesemetrics were somewhat

lower at mid-elevations than at low or high elevations. The ini-

tial decline in Mʹ was associated with losses of species from

higher trophic levels.More specifically, all species of piscivores,

sanguinivores and high-flying insectivores, and all but one spe-

cies of gleaning omnivore were not present at or above 1500 m

(Fig. S1). Greater mean dispersion characterized strata from

1750 to 2000 m due to the loss of frugivorous species and the

addition of an aerial insectivore. At higher elevations, species

were lost in more-or-less similar proportions from each of the

remaining functional groups, resulting in little change in Mʹ
throughoutmost of that part of the gradient.

The loss of species and functional groups with increasing ele-

vation is associated with changes in the diversity and abun-

dance of resources on which bats feed as well as with the

thermal environment. Resources are most abundant and

diverse in lowland rain forest (below 600 m). As temperature

and the abundances of each resource type decline with eleva-

tion, fewer populations can be sustained, with only species that

are smaller or better able to thermoregulate persisting at the

upper elevations (Cisneros et al. 2014). The relative invariance

of Mʹ indicates that the mean distance between functional

types and the relative proportion of species belonging to each

functional type are essentially constant along the gradient.

Taken together, this suggests that general rules based on limit-

ing similarity of bats may be guiding species assembly along

elevational gradients of temperature and productivity.

The relatively low value (6�67) for 1D(TM)a results from the

uneven representation of functional types and the paucity of

functional types along most of the gradient (Fig. S1). In con-

trast, mean within-site dispersion (Ma = 0�33) was nearly

equal to that for the entire gradient (Mc = 0�34), indicating
that mean dispersion of species in trait space varied little along

the gradient. TheMb of 0�01 and 1D(TM)b of 1�11 indicate that
functional differences among sites were small and that func-

tionally distinct communities do not occur along the gradient.

Both of these phenomena reflect the nested structure of

Fig. 3. The distribution of the 92 bat species

from the elevational gradient at Manu with

respect to the first two trait-space axes as

determined by NMDS. The axes account for

70%and 20%of the variation, respectively.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 809–820

816 S. M. Scheiner et al.



communities such that functional types occurring at function-

ally poor elevations also occur at more functionally rich eleva-

tions.

Consideration of functional-trait dispersion [1D(TM)], as

well as its components and partitions, facilitates the interpreta-

tion of complex patterns in the elevational gradient of bat func-

tional variability. Other commonly used functional metrics do

not expand our interpretive ability. FD and FAD each had

rank correlations of 1�0 with 1D(T) and 0�99 with 1D(TM), and

FRic and FEve each had large, negative correlations with both

(c. �0�7, Table S5). For M0, all of the other metrics had large

correlations (c. 0�6–0�9), either positive (FRic, FEve, FDis and

FDiv) or negative (FD and FAD). Consequently, our metric

and its components enable a comprehensive analysis and inter-

pretation of functional-trait dispersion, with explicit recogni-

tion of how variation in functional-trait dispersion is driven by

variation in species richness, in the effective number of func-

tionally distinct species and inmean dispersion (Fig. 4).

Discussion

DECOMPOSING AND COMPARING BIODIVERSITY

Despite its broad use in the ecological and conservation litera-

ture, and its somewhat intuitive appearance, biodiversity is a

complex concept. Anymetric of biodiversity is likely to encom-

pass multiple components and measure a variety of attributes.
qD(TM) is one such metric. We demonstrated that qD(TM)

comports to desirable criteria for a metric of functional diver-

sity and that it can be decomposed in a variety of ways that

facilitate the understanding of patterns of variation. First, the

metric has components of dispersion, evenness and species

richness that can be examined separately or in combination,

including ameasure of the effective number of functionally dis-

tinct species. For example the bats at Manu are functionally

distinct based on values of qD(T) close to S, but overall diver-

sity [qD(TM)] indicates that taxa can be grouped into a smaller

number of functional subsets. Second, we can decompose our

metric in a hierarchical fashion (i.e. a- and b-diversity). Other

metrics do not possess this flexibility.

We showed that variation in other metrics of functional

diversity is significantly associated with variation in our mea-

sures of dispersion and evenness. However, comparisons of

thosemetrics withmeasures of diversity based on other charac-

teristics such as abundance or phylogeny arehampered because

they are measuring different properties. qD(TM) is based on

quantities of distance and the effective number of functionally

distinct species. The latter aspect facilitates comparisons with

abundance diversity and phylogenetic diversity when they are

alsomeasured as effective numbers (Scheiner 2012).

Most functional diversity metrics cannot be decomposed

into a- and b-components. The exceptions are FADwhich can

be additively partitioned because it is based on the sum of dis-

tances, Rao’s Q which can similarly be additively partitioned

or multiplicatively partitioned given suitable transformation

(De Bello et al. 2010; Pavoine, Marcon & Ricotta 2016), and
qFD(Q) which can be multiplicatively partitioned (Chiu &

Chao 2014). Partitioning FRic has the same limitations as does

the metric itself. An additive partition of that metric is feasible.

However, for Landscapes 1 and 2, the mean hull volumes of

X 

X 

X = 

= 

Fig. 4. Elevational gradients inmetrics of functional diversity. The upper graphs represent components of Equation 6 [S�1, 1E(T) andMʹ], whereas
the lower graphs represent components of Equation 5 [1D(T) andM]. The graph to the far right [1D(TM)] is a consequence of the product of the ele-

vational patterns for S�1, 1E(T), and Mʹ or the product of the elevational patterns for 1D(T) and M. The arrows indicate conceptual linkages

between the components of the two equations.
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the communities, a-diversity, would be the same, so that the

two landscapes would have the same b-diversities. That result
contradicts intuition concerning the relative b-diversities of the
two landscapes. A similar problem arises with partitioning

FDiv, with the added complication of its use of centroids. For

the metrics that are based on dendrograms (FD and FEve), all

values must be rooted to the same locations or otherwise use

the same dendrogram for each part and for the whole. Criti-

cally, the ecological meaning of branch length sums for such

parts remains unclear. For each of these metrics, the ecological

meaning of b-diversity needs to be explicated. For metrics

involving Hill diversity – qD(T), qD(TM) and qFD(Q) – b-
diversity is the effective number of functionally distinct

communities. As with the effective number of species, such a

measure is comparable across systems even if based on com-

pletely different traits or if based on other species attributes

such as abundance or position in a phylogeny.

USING DIVERSITY METRICS

The choice of an appropriate metric of functional diversity

depends on the scientific question of interest. Nonetheless,

nearly all of the efforts related to thesemetrics has been devoted

to metric development. Future research should shift that focus

tomore intimatelyconsider the linkbetweenmetricsandecolog-

ical or evolutionary processes and theories. Indeed, ecological

andevolutionaryprocesses canhaveavarietyof effectson func-

tional diversity. If communities are structured by competition

throughnichepartitioning that limits functional similarity, then

overdispersionofspecies infunctionalspaceshouldcharacterize

communities compared to the functional dispersionof the same

numberof species randomlydrawn froma regional species pool

(Connell 1980). In evolutionary time, we might see the appear-

ance of character displacement. In contrast, functional

underdispersion is consistent with environmental filtering asso-

ciated with physiological tolerances, habitat affinities or

resource requirements shared by the species that inhabit a site

(Cavender-Bares et al. 2009). For example the high evenness

values and lowb-diversity values of bats atManuare consistent

with limiting similarity operating within communities. Further

insight into theseprocesses canbegainedbycomparingpatterns

of functional diversity with those of phylogenetic and abun-

dancediversity (Kluge&Kessler 2011).Beingable to express all

of these typesofdiversityas theeffectivenumberofspecies facili-

tatessuchcomparisons.

Most of the common metrics of functional diversity also

weight species identity with abundance. As such, they assume

that the effects of abundance are linear and equal for all species

and all traits. In addition, they require that abundance data to

be available and accurate, which is often not the case when

information is assembled from the literature to address ques-

tions about patterns of functional diversity across regional to

global scales. For analyses at regional or larger extents, it

remains unclear how abundance information should be aggre-

gated from local communities, even if it is available. More

importantly, not all questions concerning functional diversity

involve abundance. For example some questions regarding the

evolution of niche differentiation or the filtering of regional

species pools, are not likely to operate through per capita

effects so that weighting by abundance would be inappropri-

ate. Combining abundance and functional information into a

joint measure of diversity is most appropriate when the

assumed mechanisms of action are based on per capita effects,

such as density-dependent predation or competition. Even

then, the incorporation assumes that abundance effects are lin-

ear and that abundance values have equal functional conse-

quences for all species. For example total biomass might be a

better weighting factor for questions involving resource con-

sumption or energy use (Vance-Chalcraft et al. 2010). Finally,

population abundances are transient and may not be informa-

tive for long-term processes such as co-evolutionary interac-

tions. Thus, combining abundance and functional information

should be done with caution and only when the mechanisms

being explored involve per capita processes.

Each scientific question or theory test should be explored in

the context of an appropriate conceptual framework. The two

functional diversity concepts described in the Introduction –
the uniqueness concept and the combinatorics concept – are

appropriate for different questions. For example the unique-

ness concept and the associated diversity metrics presented in

this paper might be more appropriate for questions involving

the evolution of niche differentiation because functional-trait

dispersionismaximizedwhenthespeciesareasfunctionallydif-

ferentaspossible. Incontrast, thecombinatoricsconceptmight

be more appropriate for questions about food web structure

becausefunctionaldiversity ismaximizedwhenthecommunity

containsasmanycombinationsoftrophiclinksaspossible.

Conservation and management efforts typically have three

interrelated goals, the preservation of biodiversity for its own

sake, the maintenance of ecosystem processes, or the preserva-

tion or enhancement of ecosystem services. The second and

third goals require an understanding of the relationship of

function-of diversity or function-for diversity with ecosystem

processes. Such understanding is enhanced by approaches in

which ecosystem properties are considered as functions of spe-

cies properties (Scheiner 2012), thereby facilitating an assess-

ment of the particular metrics of functional diversity that

represent adequate proxies for particular ecosystem properties.

For the preservation of biodiversity, metrics of the effective

number of species may be the most useful. Most preservation

efforts focus on species richness, also a measure of the number

of species. Similarly, phylogenetic diversity can be expressed in

effective numbers. The use of related properties makes it easier

to compare how a specific conservation or management strat-

egy would differentially affectmultiple aspects of biodiversity.

Conclusion

Many issues remain to be resolved with respect to the con-

cepts of functional diversity and the metrics that characterize

it. Relevant for all metrics are issues concerning the selection

of functional traits and the algorithms for estimating inter-

specific distances in functional space. In addition, trait values

are typically correlated across species (e.g. size-related traits).
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Neither our metric, nor any of the other metrics of functional

diversity, account for such character correlations. Doing so

requires alternative approaches to measuring dispersion-

within and distances between communities (Kosman 1996,

2014; Kosman & Leonard 2007).

For the most part, each species is considered to be func-

tionally uniform, yet we know that individuals within species

vary. Such variation may be systematic (e.g. related to sex,

life stages or developmental niche shits), environmentally

induced (e.g. phenotypic plasticity, developmental accommo-

dation) or random, and it can affect the ecological range of

a species. Just as diversity can be partitioned within and

among communities in a landscape, it can also be partitioned

among individuals within a species. A generalist species can

consist of individuals with similar characteristics that enable

high fitness in many environments, or can consist of individ-

uals that differ in their characteristics, each with high fitness

in different environments. Exploring how these different

types of generalists relate to functional diversity of entire

communities requires a diversity metric that can incorporate

individual variation (eqs. A15–21).
Above all, further development of diversity metrics should

be tied to ecological and evolutionary theory so that the met-

rics can inform deeper understanding and be useful for man-

agement. The multifaceted nature of diversity requires metrics

that capture a range of characteristics, both as an integrated

metric and as separate components. The metric presented in

this paper is a step in that direction.
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Table S3. Incidence matrix for bats from Manu Biosphere Reserve,

arranged so that species with similar spatial distributions are adjacent.

Table S4.Functional data for bats fromManuBiosphere Reserve.

Table S5. Spearman rank correlations (above the diagonal, P-values

below the diagonal) between functional diversity measures as well as

elevation for bats fromManuBiosphere Reserve, Peru.

Appendix S1. Detailed derivations of each metric, including abun-

dance-based versions.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 809–820

820 S. M. Scheiner et al.

http://esa.org/meetings_archive/2015/webprogram/Paper55206.html
http://esa.org/meetings_archive/2015/webprogram/Paper55206.html

